The first aspartic acid of the DQxD motif for human UDP-glucuronosyltransferase 1A10 interacts with UDP-glucuronic acid during catalysis.
نویسندگان
چکیده
All UDP-glucuronosyltransferase enzymes (UGTs) share a common cofactor, UDP-glucuronic acid (UDP-GlcUA). The binding site for UDP-GlcUA is localized to the C-terminal domain of UGTs on the basis of amino acid sequence homology analysis and crystal structures of glycosyltransferases, including the C-terminal domain of human UGT2B7. We hypothesized that the (393)DQMDNAK(399) region of human UGT1A10 interacts with the glucuronic acid moiety of UDP-GlcUA. Using site-directed mutagenesis and enzymatic analysis, we demonstrated that the D393A mutation abolished the glucuronidation activity of UGT1A10 toward all substrates. The effects of the alanine mutation at Q(394),D(396), and K(399) on glucuronidation activities were substrate-dependent. Previously, we examined the importance of these residues in UGT2B7. Although D(393) (D(398) in UGT2B7) is similarly critical for UDP-GlcUA binding in both enzymes, the effects of Q(394) (Q(399) in UGT2B7) to Ala mutation on activity were significant but different between UGT1A10 and UGT2B7. A model of the UDP-GlcUA binding site suggests that the contribution of other residues to cosubstrate binding may explain these differences between UGT1A10 and UGT2B7. We thus postulate that D(393) is critical for the binding of glucuronic acid and that proximal residues, e.g., Q(394) (Q(399) in UGT2B7), play a subtle role in cosubstrate binding in UGT1A10 and UGT2B7. Hence, this study provides important new information needed for the identification and understanding of the binding sites of UGTs, a major step forward in elucidating their molecular mechanism.
منابع مشابه
Amino acid residue ILE211 is essential for the enzymatic activity of human UDP-glucuronosyltransferase 1A10 (UGT1A10).
Conjugation of exogenous and endogenous compounds by uridine diphosphoglucuronosyltransferases (UGTs) is a pathway catalyzing the transfer of a glucuronic acid molecule from UDP glucuronic acid to lipophilic aglycones, which become more polar and more easily excretable in the bile or urine. UGTs are divided into two major families, UGT1 and UGT2. The isoform UGT1A10, along with UGT1A7 and UGT1A...
متن کاملEvidence for an UDP-glucuronic acid/phenol glucuronide antiport in rat liver microsomal vesicles.
The transport of glucuronides synthesized in the luminal compartment of the endoplasmic reticulum by UDP-glucuronosyltransferase isoenzymes was studied in rat liver microsomal vesicles. Microsomal vesicles were loaded with p-nitrophenol glucuronide (5 mM), phenolphthalein glucuronide or UDP-glucuronic acid, by a freeze-thawing method. In was shown that: (i) the loading procedure resulted in mil...
متن کاملUridine diphosphoxylose enhances hepatic microsomal UDP-glucuronosyltransferase activity by stimulating transport of UDP-glucuronic acid across the endoplasmic reticulum membrane.
The UDP-glucuronosyltransferase (UGT) system fulfils a pivotal role in the biotransformation of potentially toxic endogenous and exogenous compounds. Here we report that the activity of UGT in rat liver is stimulated by UDP-xylose. This stimulation was found in native microsomal vesicles as well as in the intact endoplasmic reticulum (ER) membrane, as studied in permeabilized hepatocytes, indic...
متن کاملInteraction of periodate-oxidized UDP-glucuronic acid with recombinant human liver UDP-glucuronosyltransferase 1A6.
Sodium periodate reacts with UDP-glucuronic acid (UDP-GlcUA) to generate a reactive derivative [periodate-oxidized UDP-GlcUA (o-UDP-GlcUA)]. The ability of this analog of UDP-GlcUA to inactivate and label the human recombinant UDP-glucuronosyltransferase (UGT) UGT1A6 via the UDP-GlcUA binding site was investigated. At an o-UDP-GlcUA concentration of 20 mM, the enzymatic activity of UGT1A6 was t...
متن کاملThe UDP-glucuronosyltransferases: their role in drug metabolism and detoxification.
Human UDP-glucuronosyltransferase (UGT) exists as a superfamily of 22 proteins, which are divided into 5 families and 6 subfamilies on the basis of sequence identity. Members of the UGT1A and 2B subfamilies play a key role in terminating the biological actions and enhancing the renal elimination of non-polar (lipophilic) drugs from all therapeutic classes. These enzymes primarily catalyse the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 36 3 شماره
صفحات -
تاریخ انتشار 2008